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The various physical factors affecting measured diffraction

intensities are discussed, as are the scaling models which may

be used to put the data on a consistent scale. After scaling, the

intensities can be analysed to set the real resolution of the data

set, to detect bad regions (e.g. bad images), to analyse

radiation damage and to assess the overall quality of the data

set. The significance of any anomalous signal may be assessed

by probability and correlation analysis. The algorithms used

by the CCP4 scaling program SCALA are described. A

requirement for the scaling and merging of intensities is

knowledge of the Laue group and point-group symmetries: the

possible symmetry of the diffraction pattern may be

determined from scores such as correlation coefficients

between observations which might be symmetry-related.

These scoring functions are implemented in a new program

POINTLESS.
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1. Introduction

The diffraction intensities measured by integrating spots

recorded on an area detector are not all on the same scale

because they are affected by a number of physical factors from

the experiment, most of which are difficult to measure directly.

The process of ‘data reduction’ uses the redundancy of

multiple measurements of symmetry-related reflections to put

all observations on a common scale by fitting a scaling model

which reflects the experiment. This process produces a data set

which is internally consistent, within the errors of the model,

though not necessarily correct on an absolute scale.

Analysis of the agreement between equivalent reflections

after scaling gives estimates of the quality of the data and also

highlights parts of the data which agree poorly with the rest.

This allows decisions to be made about whether parts of the

data should be rejected.

This paper discusses the physical reasons for the differences

in scale, the scaling model and the analysis of data. This

discussion is based on the CCP4 program SCALA, but the

general ideas also apply to other implementations of scaling.

Some more details of the program SCALA are given in

Appendix A. This paper also discusses some considerations in

the determination of the Laue group and hence the space

group and a new program (POINTLESS) which scores and

ranks different possible Laue groups.

2. Physical reasons for differences of scale

The various factors affecting the measured intensity can be

divided into those dependent on the primary beam and the



way in which the crystal is rotated, those dependent on the

diffracted beam direction and those dependent on the

detector. These factors may then be combined into a model to

correct the measured intensities.

2.1. Factors related to the incident X-ray beam

We generally assume that reciprocal space has been

sampled by rotation of the crystal at a constant speed in an

incident beam of constant or smoothly varying intensity and

that adjacent images exactly abut each other in rotation angle.

Variations in the rotation rate, rapid fluctuations in incident-

beam intensity or errors in synchronization of the shutter

cause systematic errors which are difficult or impossible either

to detect or to model and ideally these factors should be

explicitly monitored.

Correctable factors are slow variation in incident-beam

intensity (for example on synchrotron beams), change in

illuminated volume if the beam is smaller than the crystal and

absorption in the primary beam. These can be grouped toge-

ther into a single correction factor dependent on the crystal

rotation.

2.2. Factors related to the crystal and diffracted beam

Absorption in the secondary beam direction is serious at

long wavelengths and worth correcting in all cases, particularly

as a relative correction for single- or multiple-wavelength

anomalous scattering measurements. The most difficult

systematic error is radiation damage, since radiation causes

the structure to change with time, which means that different

reflections change at different rates. Extrapolation to zero

time (Diederichs et al., 2003; Diederichs, 2006) requires many

observations of each reflection well spaced out in time and this

is not generally possible in radiation-sensitive cases. The

relative B factor (see x3 and xA2.2) is essentially a correction

for average radiation damage.

2.3. Factors related to the detector

The detector should be properly calibrated for spatial

distortion and sensitivity of response as well as for any

defective regions and should be stable: detector corrections

cannot easily be extracted from diffraction data. The user will

usually have to tell the integration program about shadows

from the beam-stop and other obstructions and it is important

to do so.

3. Modelling the correction factors

The scaling model should be chosen as far as possible to

describe the diffraction experiment performed. Various

scaling models have been used to model the correction as a

function of rotation (or time) and the direction of the

diffracted beam: a good discussion of modelling the various

factors, using a general exponential model, is given by Otwi-

nowski et al. (2003). The simplest model applies a different

scale factor for each image, but the scale does not usually vary

sharply from one image to another, so a smooth function is

more appropriate: the function used in SCALA was inspired

by the method of Kabsch (1988) (see Appendix A and Kabsch,

2000). Using separate scales for each image (‘batch’ scales)

introduces discontinuities in the scale, even if neighbouring

scales are restrained together (Otwinowski et al., 2003), which

is usually undesirable. ‘Batch’ scaling also causes complica-

tions for partially recorded reflections in that different parts of

the same reflection have different scales, so that in the

determination of scales either the partial derivatives must be

partitioned according to the calculated fraction or each part

must be treated separately and scaled up to the full equivalent

(Rossmann & van Beek, 1999); both methods use the calcu-

lated fraction, which is typically not very accurate. A smooth

scale model avoids this problem by scaling each reflection

after summing all its parts.

The other traditional component of the scaling model is

a relative B factor, exp(�2Bsin2�/�2), where B is a function

of time (or rotation or image number). This provides a

resolution-dependent radiation-damage correction, but it

is an average correction and cannot account for localized

radiation damage. Like the scale factor, this is best treated as a

smooth function of time (or rotation as its proxy; see

xA2.2).

Absorption in the secondary beam direction is best para-

meterized as coefficients of real spherical harmonics, either in

the rotating crystal frame or in the diffractometer frame

(Katayama, 1986; Blessing, 1995). These two coordinate

frames give very similar results if data are collected about a

single rotation axis, but if a crystal is rotated about two or

more axes a single absorption surface expressed in the crystal

frame may in principle be used for all rotation sweeps. This

assumes perfect centring of the crystal, so use of different

surfaces for each sweep is likely to be better.

SCALA includes an optional and rather crude correction

for errors introduced by the long tails on reflections from

diffuse scattering and the inconsistency of sampling these tails

by relatively coarse slicing on the rotation (see xA2.4). This

may be helpful when the image width is comparable to or

larger than the reflection width, when the sampling of the

reflection profile is very different between reflections

measured on one, two or more images. The error caused by

this differential sampling is apparent in the systematic

underestimation of fully recorded reflections (from one

image) compared with summed partials (from two or more

images), giving rise to a negative ‘partial bias’, defined asP
hðhIfulli � IpartialÞ=

P
hðhIfulliÞ, where hIfulli is the average of

all fully recorded observations of the reflection (or more

generally of the observations with the smallest number of

parts) and Ipartial is a summed partial observation and the

summation is over all reflections which have both fully

recorded and partial observations and over all summed

partials. This correction should be applied with caution, since

such bias can also arise from underestimation of the mosaic

spread defining the width of the Bragg peak: in this case, the

‘tails’ correction is inappropriate. It is also unlikely to be

helpful when the image width is smaller than the reflection

width (‘fine slicing’).
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4. Determining the correction factors

The correction factors are optimized to make the data as

internally consistent as possible by minimizing the difference

between symmetry-related observations. Note that the only

information we have is the measured difference between

symmetry-related observations (unless an external reference

data set is used), so any systematic error which follows the

crystallographic symmetry will not be corrected: in particular,

crystal absorption errors may remain since the shape of a

crystal often obeys its diffraction symmetry. It follows that to

obtain the most accurate data symmetry-related observations

should be measured in as different a way as possible (by

rotation about more than one axis). Conversely, to obtain the

most accurate differences for phasing (anomalous or isomor-

phous), equivalent observations should be be measured in as

similar way as possible, with the same systematic errors.

The function minimized is

� ¼
P

h

P
l

whlðIhl � ghlhIhiÞ
2
þ parameter restraint terms;

where Ihl is the lth observation of reflection h, ghl is its asso-

ciated inverse scale, whl = 1/�2(Ihl) and hIhi is the weighted

average intensity for all observations l of reflection h

(Hamilton et al., 1965; Fox & Holmes, 1966). The inverse scale

ghl is a function of all the parameters in the model.

From minimization of � within one reflection,

hIhi ¼
P

l

whlghlIhl

�P
l

whlg
2
hl:

By minimizing � over all reflections, we obtain values for all

the parameters. This is performed by a singular value

decomposition (Fox & Holmes, 1966), eliminating two zero

eigenvalues corresponding to the scales and the B factors,

since the residual � is unchanged by multiplying all the scale

parameters by a constant or by adding a constant to all the B

factors. The first scale factor is normalized to a value of 1 and

the B-factor parameters are all forced negative by normalizing

the largest one to 0. Parameters may be restrained by addi-

tional terms in the residual: for example, it is useful to restrain

the coefficients of the spherical harmonic terms in the

absorption correction to a target value of 0 to avoid wild

corrections with limited data (see xA2.3.)

5. Assessment of data quality

After applying the refined scale model, the quality of the data

may be assessed in a number of ways based on the internal

consistency of the data and comparison of the corrected

intensities with the corrected standard deviations (see xA3).

There are a number of important questions about the data

which need to be answered: what is the real resolution, are

there bad regions of data which should be omitted, is there any

anomalous signal and what is the overall quality of the data?

The internal consistency may be measured as R factors or as

correlation coefficients. The conventional Rmerge (also known

as Rsym) is not a particularly good measure of data quality as it

only measures the discrepancy between observations and

takes no account of the improvement in the merged intensity

by averaging many observations: indeed, Rmerge tends to

increase with increasing multiplicity. Improved multiplicity-

weighted R factors have been suggested by Diederichs &

Karplus (1997), Weiss & Hilgenfeld (1997) and Weiss (2001).

If nh is the number of observations of reflection h, then

Rmerge ¼ Rsym ¼
P

h

P
l

jIhl � hIhij
�P

h

P
l

hIhi;

the traditional Rmerge,

Rmeas ¼ Rr:i:m: ¼
P

h

nh

nh � 1

� �P
l

jIhl � hIhij
�P

h

P
l

hIhi;

the multiplicity-independent R factor, and

Rp:i:m: ¼
P

h

1

nh � 1

� �X
l

jIhl � hIhij
�P

h

P
l

hIhi;

the precision-indicating R factor.

Rmeas = Rr.i.m. is an improved version of the traditional

Rmerge and measures how well the different observations

agree. Rp.i.m. is a measure of the quality of the data after

averaging the multiple measurements.

5.1. What is the real resolution?

The variance-weighted average intensities fall off with

increasing resolution and may be compared with the corrected

standard deviation estimate (xA3). A typical resolution

cutoff is when hI/�(I)i (averaging within resolution bins on

1/d2 = 4sin2�/�2) falls below 2.0. Beyond this point, the data are

probably too weak to be useful in structure determination.

The correlation coefficient between intensities averaged

within two random half data sets also gives an indication of the

maximum resolution (see Fig. 3b and x6). Many crystals show

anisotropic diffraction and the resolution limits ought to be

anisotropic, but at present no programs treat anisotropic data

gracefully.

research papers

74 Evans � Scaling and assessment of data quality Acta Cryst. (2006). D62, 72–82

Figure 1
A plot of Rmerge against batch number shows one wrong batch (a blank
image).



5.2. Are there bad parts of the data?

A plot of Rmerge against ‘batch’ number will show if there

any individual images or parts of the data which are signifi-

cantly worse than the rest of the data: this might suggest that

there is a bad image or that something has gone wrong with

the integration. In the case illustrated in Fig. 1 there is a blank

image owing to the beam disappearing.

Radiation damage causes serious degradation of data

quality and shows up in several plots against batch number,

but most clearly from the relative B factor: Fig. 2 shows that as

the crystal dies the scale increases, the B factor becomes more

negative, the Rmerge increases and hIi/hScatteri [where Scatter

is the r.m.s. value of (Ihl � hIi)] decreases.

5.3. Outlier rejection

Occasionally, individual observed intensities are just wrong,

for one of a number of reasons. These include (i) spots which

do not belong to the main crystal lattice but overlap a

predicted position, from ice crystals, salt crystals or another

crystal, (ii) zingers, i.e. events on the detector which do not

arise from X-rays, and (iii) spots which lie outside the active

area of the detector, e.g. behind the beamstop.

Detecting outliers is reasonably easy if the reflection has

been measured many times, but is not possible for a reflection

measured only once or twice: this is a major reason for

measuring data with a high multiplicity. The outlier rejection

algorithm used in SCALA is described in xA5. Note that

outlier detection generally assumes that the majority of

observations of a reflection are correct: one common case

where this may cause problems is with spots behind a slightly

miscentred beamstop, when it is possible that the majority of

observations are wrong and the program will reject the correct

ones. It is important to tell the integration program (e.g.

MOSFLM) the position of the beamstop explicitly.

Spurious observations arising from ice or salt spots are

often very large and may be rejected if they have an intensity

much larger than would be expected (Read, 1999). This test is

performed on the normalized amplitudes E, normalized as a

function of resolution such that hE2
i = 1. An E of > 4 is very

unlikely, but because of the errors in normalization, particu-

larly at low resolution where the mean intensity is changing

rapidly with resolution and there are relatively few reflections,

or with anisotropic data, it is better to reject only observations

with E > 8–10.

6. Scaling of multiple-wavelength data sets and
detection of anomalous signal

When multiple data sets have been collected from the same

crystal (or indeed different crystals) at different wavelengths

for a MAD experiment, the relative systematic errors may be

reduced by scaling them together, assuming for the purposes

of scaling that the differences between the data sets arising

from different anomalous scattering are small. Similarly, the

differences between Bijvoet pairs I + and I� within a data set

are usually small and may be ignored in the scaling step.

Scaling data sets together forces all observations to be as

similar as possible within the scaling model and improves the

signal, since the scaling model varies slowly in reciprocal space

while the desired signal (anomalous or dispersive differences)

varies more rapidly, so the differences remaining after the

relative systematic errors have been removed are closer to the

true signal. This was discussed by Evans (1997), but in retro-

spect the scaling seems to work well without the reference

data set recommended there.

It is useful to know if there is any significant anomalous or

dispersive signal before attempting to locate anomalous scat-

terers. The observed anomalous differences may be compared

with their estimated standard deviations using a normal

probability plot of the normalized differences �anom = I +
� I�

[�2(I+) + �2(I�)]1/2 (Howell & Smith, 1992). The slope of the

central region of this plot will be >1 if the anomalous differ-

ences are larger than expected from their standard devations

(Fig. 3a). Another way of detecting a signal is from the

correlation coefficient between differences in different data

sets (Fig. 3b): this will fall off with resolution and may be used

to set a suitable maximum resolution limit for initial trials to

locate anomalous scatterers (Schneider & Sheldrick, 2002). If

only one data set is available (SAD), it may be split randomly
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Figure 2
Radiation damage: with increasing time of exposure (or batch number),
the scale increases as the intensity decreases (a, open squares), the
relative B factor gets becomes negative (a, filled circles), Rmerge increases
(b, open squares) and hI i/hScatteri decreases (b, filled circles). [hScatteri
is r.m.s.(Ihl � hI i.]
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Figure 3
Significance of anomalous signal in a three-wavelength MAD data set (peak, edge, remote). (a) Normal probability plot of anomalous differences
�anom = (I +

� I�)/[�2(I +) + �2(I�)]1/2 for each wavelength. The central slope indicates the strength of the anomalous signal relative to the estimated
errors, Peak > Remote > Edge. (b) Correlation coefficients between pairs of different wavelengths: filled circles, peak to edge; diamonds, edge to remote;
open circles, peak to remote. The dashed line is the correlation coefficient between dispersive differences, peak–remote to edge–remote. (c) Correlation
coefficients between random half data sets with the peak data set: filled circles, anomalous differences (acentric); open circles, Bijvoet differences for
centric data (should be 0); diamonds, hIi, showing decrease in the quality of the intensities themselves at high resolution.

into two half data sets, provided the multiplicity is high

enough, and the correlations calculated between the two

halves (Fig. 3c).

Another way of analysing the significance of the anomalous

signal from the half data sets is from a scatter plot: for each

reflection we divide the I + and the I� observations randomly

into two sets, average them within the sets and subtract them

to obtain �I1 = hI+
i1 � hI

�
i1, �I2 = hI +

i2 � hI
�
i2 for each

reflection, then plot �I1 against �I2. For perfect data where

�I1 = �I2, this plot would have all points lying along the

diagonal. The correlation coefficient is the slope of the least-

squares straight line fitted through these points, but it is very

sensitive to a few outliers and makes no use of the fact that the

slope should be 1.0 for ideal data. Real data (Fig. 4a) shows a

distribution which is roughly elliptical. The width of the

distribution along the diagonal is a measure of the signal and

its width perpendicular to the diagonal is a measure of the

error, so the ratio of these, the r.m.s. correlation ratio = (r.m.s.

deviation along diagonal)/(r.m.s. deviation perpendicular to

diagonal), can be used as a measure of the significance of the

signal and may be plotted as a function of resolution (Fig. 4b).

In the absence of any anomalous signal, the distribution is

spherical (Fig. 4c) and the r.m.s. correlation ratio is close to 1

(Fig. 4d). This measure seems somewhat more robust than the

correlation coefficient, with less variation between resolution

bins, but leads to similar conclusions about a suitable resolu-

tion at which to truncate the data to preserve a strong signal:

for the peak wavelength in the example in Figs. 3, 4(a) and

4(b), a good signal extends to about 3.6 Å resolution with

correlation coefficients between and within data sets of above

about 0.3 and an r.m.s. correlation ratio of above 1.5.

7. Determination of Laue group, point group and space
group

The true space group of a crystal cannot be known with

certainty until the structure has been solved and refined, since

it is easy to be misled by pseudosymmetry and perhaps by

twinning, but the space group does impose itself on the

diffracted intensities and from these it is possible to propose

the likely space group or at least a range of possibilities. It is

useful to find the likely symmetry as early as possible during

the initial examination of a crystal, since it affects the data-

collection strategy (how much rotation range is needed for a



complete data set). Scaling and merging depends on the Laue

group (or more strictly, the point group; see below), since this

controls which spots are related by symmetry. This section

describes the methods which are used in a new program to

determine the Laue group, POINTLESS, which will be

distributed in the CCP4 suite.

7.1. Stages in space-group determination

The determination of space group can be considered as a

series of stages of increasing difficulty: determining succes-

sively the lattice symmetry, the Laue group, the point group

and the space group. At all stages, distinguishing between the

possibilities may be uncertain owing to either a small number

of observations or pseudosymmetry (see x7.2).

7.1.1. Lattice symmetry: crystal class. Autoindexing

determines the unit-cell parameters of the observed lattice

initially without constraints, but the crystal class imposes

restrictions on the allowed cell (e.g. a = b, � = � = 90, � = 120�

for a hexagonal lattice) and lattice centring restricts which

indices are present (e.g. h + k + l even for an I-centred lattice).

When indexing a diffraction pattern, the user (or the program)

chooses a lattice which fits geometrically to the observed spot

positions within an acceptable limit on some penalty function

(see, for example, Leslie, 2006), but the apparent cell restric-

tions may occur accidentally (e.g. �’ 90� in a monoclinic cell)

and at the indexing stage the intensities are not available to

indicate that the wrong choice has been made.

7.1.2. Laue group symmetry. The Laue group is the

symmetry of the diffraction pattern, plus any lattice centring.

It corresponds to the space group without any translations,

with an added centre of symmetry from Friedel’s law. The

Laue group may be inferred from the observed symmetry of

the diffraction pattern (see x7.2).

7.1.3. Point-group symmetry. To take anomalous dispersion

into account, intensity observations should be averaged

according to the point group that can be derived from the

space group by removing the lattice type and translations. For

chiral space groups (i.e. for all macromolecular crystals), there

is only one possible point group corresponding to each Laue

group. For many non-chiral space groups, the point group may

be inferred by determination of which principal zones of the

reciprocal lattice are centric, which can be performed from

intensity statistics: a centre of symmetry makes all reflections

centric and a twofold axis (rotation or screw) makes the

perpendicular zone centric, while a mirror or glide plane does

not. However, in practice tests on zone statistics are unreli-

able, particularly in the presence of heavy atoms or pseudo-

symmetry (G. M. Sheldrick, personal communication).

7.1.4. Space-group symmetry. The space group is the point

group plus translations (screw axes for chiral space groups).

Screw axes are only visible in the diffraction pattern as

systematic absences along the axes and these are not always

very reliable as there may be few reflections and there may

also be accidental absences. Determination of the translational

part of the space group from axial absences must be consid-

ered as a hypothesis to be confirmed by structure solution. In

non-chiral cases, possible glide planes

introduce absences throughout a zone

which may be detected more reliably.

7.2. Scoring functions for
determination of Laue group symmetry

To distinguish between possible Laue

groups, we need to compare observa-

tions which might be related by

potential symmetry and score their

agreement. There are two problems

which need to be addressed in choosing

a suitable method of scoring. Firstly, we

would like to be able to obtain a preli-

minary idea of the symmetry from a

very partial data set, from the first few

images, even before a complete data

collection and we want a method which

is robust to limited data and will not

give a spurious high score from a few

accidental agreements. Secondly, we

would like a score function which is

insensitive to the scale between obser-

vations, since we need to know the

symmetry to scale the data.

Two sorts of scoring functions have

been tried.
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Figure 4
Significance of anomalous signals from random half data sets. (a) Scatter plot of �Ianom pairs for the
peak data set shown in Fig. 3, showing a strong correlation. (b) R.m.s. correlation ratio (see text) as a
function of resolution: filled circles, acentric data; open circles, centric data. (c) Scatter plot for a
native data set, showing no anomalous signal. (d) R.m.s. correlation ratio for native data set.



(i) Difference functions, which are sensitive to the unknown

scale

RMSdifference ¼ �
P

h

fðI1 � I2Þ
2=½�2ðI1Þ þ �

2ðI1Þ�g

� �

summed over all pairs of observed intensities I1 and I2 which

might be related by symmetry. This would be the log(prob-

ability) if the errors �2(I) were random and I1 and I2 were on

the same scale.

(ii) Product functions such as the correlation coefficient,

which are relatively insensitive to the unknown scale. A

correlation coefficient does however assume that all obser-

vations come from the same underlying distribution, so it

needs to be calculated from normalized intensities E2 to avoid

the artificial correlation arising from the change in hIi with

resolution. Since use of E2 enhances the weak high-resolution

intensities, thus inflating their errors, it is necessary to truncate

the resolution of the data to remove very weak data. At

present, POINTLESS uses a cutoff hIi/h�(I)i > 1.5. Surpris-

ingly, correlation coefficients with contributions weighted by

1/�2(I) seemed in several trials to be less discriminating than

the standard unweighted coefficients.

Use of the correlation coefficient reduces the problem of

the unknown scales, but the problem of small samples remains.

The approach used in POINTLESS is to calculate the score

given by all possible intensity pairs related by a potential

symmetry element (the test score) and to compare this score

with scores from the same size groups of unrelated pairs. The

many pairs at the same resolution which cannot be related by

symmetry are divided into groups of the same size as the test

sample (with a maximum size of say 200, since larger groups

should not be very different), the score is calculated for each

group and then the mean and standard deviation of these

scores used to convert the test score into a Z score,

Zðtest scoreÞ ¼
fScoreðtestÞ �Mean½ScoreðunrelatedÞ�g

�½ScoreðunrelatedÞ�
:

7.3. Determining the Laue group in POINTLESS

POINTLESS reads unmerged integrated intensities from,

for example, MOSFLM and determines the lattice with

highest possible symmetry compatible with the unit-cell

parameters, within a rather generous limit (currently 3�; Le

Page, 1982). The symmetry in the file is ignored. Most of the

symmetry handling in the program uses the cctbx library

(Grosse-Kunstleve et al., 2002). Each symmetry element

(rotation axis) in this lattice symmetry is scored separately

using all pairs of observations related by that rotation. All the

possible combinations of these elements are then scored,

giving all the possible subgroups. For each subgroup the score

for elements belonging to the lattice group but not to the

subgroup are subtracted from the score for elements which do

belong to the subgroup

NetZ ¼ ZðforÞ � ZðagainstÞ:

This favours the highest symmetry consistent with a good

score in preference to lower symmetries with good Z(for)

scores.

7.3.1. Example 1: an orthorhombic case with a ’ b. A

crystal indexed and integrated with unit-cell parameters

a = 44.67, b = 46.10, c = 117.89 Å, � = � = � = 90� was tested in

the possible tetragonal lattice P4/mmm using either just the

first 5� of data or a full 90� data set. Table 1 shows the scores

for the individual possible symmetry elements: the twofold

axes along c [001] and a [100] are clearly present, but the

twofold along b [010] has only four pairs of observations and

thus is indeterminate. The potential fourfold axis along l [001]

is not obviously present and the diagonal twofolds are absent.

With the full 90� data set (right-hand part of table) the Z

scores are larger, mainly because �[CC(unrelated)] is smaller

and the twofold along b is now clear. Table 2 shows the scores

for all the possible Laue groups, showing that even with the

very limited 5� of data the correct Laue group Pmmm is

reasonably clear.

7.3.2. Example 2: pseudo-hexagonal Cmmm. A hexagonal

lattice may be indexed as C-centred orthorhombic in three

different ways, related by 60� rotations. Conversely, a true

C-centred orthorhombic lattice with b = 31/2a can be indexed

as hexagonal. In this case, an autoindexing program has only a

one in three chance of picking the correct orthorhombic

lattice.

In the case illustrated in Tables 3 and 4, the unit cell has

b ’ 31/2a and was indexed incorrectly. The scores on the

individual symmetry elements (Table 3) clearly pick out the

correct 222 set of rotations and the combination (Table 4)

selects the correct Cmmm setting.

7.4. Future directions

Future developments of POINTLESS will include assess-

ment of intensity statistics and systematic absences in order to

score possible space groups and to detect twinning and

comparison with previously collected data sets to choose
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Table 1
Example 1: an orthorhombic case with a ’ b, scores for each symmetry
element.

Unit-cell parameters a = 44.67, b = 46.10, c = 117.89 Å, �= � = � = 90�, tested in
tetragonal lattice P4/mmm. Even in the limited data set from images 1–5 (5�,
left-hand part of table) the twofold axes along c [001] and a [100] are clearly
present, but the twofold along b [010] has only four pairs of observations so is
undetermined. The potential fourfold axis along c [001] is not obviously
present and the diagonal twofolds are absent. With the full 90� data set (right-
hand part of table) the Z scores are larger mainly because �[CC(unrelated)] is
smaller. CC is the correlation coefficient between potentially related pairs of
E2 and Z-CC is the Z score for correlation coefficients as defined in the text.

Images 1–5 All data

Symmetry element Z-CC CC No. Z-CC CC No.

Twofold [001] 1.51 0.48 22 +++ 11.0 0.73 24337
Twofold [100] 2.85 0.73 33 +++ 11.4 0.75 33259
Twofold [110] �1.02 �0.13 45 2.23 0.14 26701
Twofold [010] �1.36 �0.76 4 +++ 11.0 0.73 19199
Twofold [1�10] �1.10 �0.15 37 0.93 0.05 28477
Fourfold [001] �0.68 �0.01 72 + 3.72 0.24 60928



between alternative valid but non-equivalent indexing

schemes. Ultimately, it is intended that all the facilities of

SCALA will also be included.

APPENDIX A
Algorithms used in SCALA

This appendix describes some of the details of the scaling and

analysis calculations in SCALA. It is not comprehensive, but

covers the most important and commonly used functions. The

description here refers to version 3.2.13. Most of the algo-

rithms also described in the documentation for SCALA

distributed by CCP4.

A1. Files, data sets, runs and batches: data organization

Unmerged intensity data is read from a file in the CCP4

MTZ format, which represents a hierarchy of data organiza-

tion. This file typically comes from the integration program

MOSFLM, but intensities from other programs may be

imported via the CCP4 programs COMBAT or DTREK2-

SCALA. With COMBAT, geometric information may be lost

in this process, so not all scaling options may be available. The

file may contain several data sets (e.g. collected at different

wavelengths for MAD), each of which is divided by the

program into ‘runs’. Each run consists of spots from a set of

contiguous images (‘batches’) and has its own set of scaling

parameters, i.e. the scales vary smoothly within the run but are

different between runs. SCALA automatically divides data

into runs at any discontinuity in batch number or rotation

angle. A ‘reflection’ consists of all ‘observations’ of symmetry-

related intensities and each observation may consist of a

number of ‘parts’. Parts are summed to form a complete

observation, provided that either the flags from MOSFLM are

consistent (e.g. all parts 1–3 of three present) or the total

calculated fraction (read from the file) is within limits (usually

0.95–1.05).

A2. Scaling model

The inverse scale factor for an observation Ihl (i.e. the lth

observation of reflection h) is composed of four parts

ghl ¼ ðScale ChlÞ � ðB factor ThlÞ � ðAbsorption ShlÞ

� ðTails correction LhlÞ:

A2.1. Scale factor. The scale term Chl for a reflection

measured at rotation angle ’ is smoothly interpolated with

Gaussian weights from a series of scales at intervals, typically

5� (�’), covering the range of the data in a run. For the

normalized rotation angle r = (’ � ’0)/�’ (where ’0 is the

initial rotation angle),

scaleCðrÞ ¼
P

i

Ci exp½�ðr� riÞ
2=Vr�;
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Table 2
Example 1: an orthorhombic case with a ’ b, possible Laue groups ranked by NetZ-CC.

Z-CC+ is the Z(for) score for symmetry elements belonging to the subgroup; Z-CC� is the Z(against) score for symmetry elements belonging to the lattice group
but not the subgroup.

Images 1–5 All data

Laue group NetZ-CC Z-CC+ Z-CC� NetZ-CC Z-CC+ Z-CC� Reindex operator

Pmmm 3.79 3.01 �0.78 +++ 8.15 11.12 2.97 [h, k, l]
P12/m1 3.43 2.85 �0.58 ++ 6.44 11.38 4.94 [k, h, �l]
P12/m1 1.63 1.51 �0.12 ++ 6.03 10.99 4.96 [�h, l, k]
P4/m 0.24 0.28 0.05 ++ 5.86 11.02 5.17 [h, k, l]
P4/mmm �0.04 0.04 0.0 ++ 5.70 5.70 0.00 [h, k, l]
P�1 �0.04 0.0 0.04 �1.02 5.28 6.30 [h, k, l]
C12/m1 �1.26 �1.1 0.16 �1.16 4.97 6.12 [h + k, �h + k, l]
P12/m1 �1.44 �1.36 0.08 �3.85 2.23 6.08 [h, k, l]
Cmmm �1.75 �0.65 1.10 �5.44 0.93 6.36 [h + k, �h + k, l]
C12/m1 �1.88 �1.02 0.86 �5.70 0.00 5.70 [h � k, h + k, l]

Table 3
C222 pseudo-hexagonal lattice.

Unit-cell parameters a = 74.72, b = 129.22, c = 184.25 Å, � = � = � = 90�,
b’ 31/2a, tested in hexagonal lattice group P6/mmm. Twofold axes are present
along the hexagonal axes a, c � a [�1 2 0] and c.

Symmetry element Z-CC CC

Twofold [001] 10.22 0.70
Twofold [1�10] �0.52 �0.03
Twofold [2�10] 0.11 0.02
Twofold [100] 11.37 0.78
Twofold [110] �0.83 �0.05
Twofold [010] 0.22 0.02
Twofold [�120] 11.60 0.79
Threefold [001] �0.03 0.01
Sixfold [001] 0.70 0.06

Table 4
C222 pseudo-hexagonal lattice, discriminating between the three possible
orthorhombic cells.

Rmeas is the multiplicity-weighted Rmerge, but calculated for unscaled normal-
ized (E2) intensities, hence its high value.

Laue
group NetZ-CC Z-CC+ Z-CC� CC Rmeas Reindex operator

Cmmm 10.94 10.97 0.03 0.75 0.19 [3/2h + 1/2k, 1/2h � 1/2k, �l]
Cmmm 2.48 4.68 2.21 0.33 0.47 [1/2h + 1/2k, 3/2h � 1/2k, �l]
Cmmm �0.71 2.42 3.13 0.17 0.48 [h, k, l]
P6/mmm 2.86 2.86 0.00 0.20 0.51 [1/2h + 1/2k, 1/2h � 1/2k, �l]



where Ci are the scale factors at positions ri and the summa-

tion i is over all scales close to position r, i.e. with (r� ri)
2/Vr <

ProbLim (default = 3.0). Vr is the ‘variance’ of the weight

(default value 1.0). This is similar to the method of Kabsch

(1988).

A2.2. B factor. The B-factor term is similarly derived from a

smoothed function of ‘time’ t (usually time is taken as

equivalent to ’), with B factors defined at intervals (default

interval �t = 20� on ’).

Normalized time t ¼ ðthl � t0Þ=�t;

where t0 is the initial time,

B-factor scale TðtÞ ¼ exp½þ2BðtÞ sin2 �=�2
�;

BðtÞ ¼
P

i

Bi exp½�ðt � tiÞ
2=VB�;

where Bi are the B factors at positions ti, the summation is for

(t� ti)
2/VB < ProbLim and VB is the smoothing weight (default

= 0.5). Note the positive sign in the exponent arises because

this is the inverse scale.

A2.3. Absorption correction. The absorption term is

derived from summing a series of spherical harmonic terms

(Katayama, 1986; Blessing, 1995) as a function of the

diffracted beam vector s2, expressed either in the diffract-

ometer frame or the crystal frame.

Shlðs2Þ ¼ 1þ
Plmax

l¼1

Pþl

m¼�l

ClmYlmðs2Þ;

where Clm are the coefficients to be determined and Ylm(s2)

are the spherical harmonic functions. Harmonics up to order

lmax = 4 or 6 are sufficient to give a good fit. The initial ‘1’ in

this equation is essentially the zeroth-order term (l = 0).

Ideally, absorption should be identical if the beam is reversed

[i.e. S(s2) = S(�s2)] which implies that terms with l odd should

have zero coefficients, but inclusion of the odd-order terms

allows for crystal mis-centring and other approximations and

provides a useful correction to errors in anomalous differ-

ences, since I + and I� observations then have different

corrections applied, even for inverse-beam experiments.

The coordinate frame used for s2 is not critical, but usually

the diffractometer frame is used,

s ¼ UBh;

where B is the crystal orthogonalization matrix, U is the

orientation matrix, � is the diffractometer rotation matrix and

s is the diffraction vector

s2 ¼ s� s0;

where s0 is the incident-beam vector. The diffractometer

frame

s2d ¼ ½���s2

and the permuted crystal frame

s2c ¼ ½�Q�½�U�½���s2;

where Q is a permutation matrix

To keep the absorption surface smooth in regions where

there is no data, the coefficients Clm are restrained to a value

of 0 with a quadratic penalty function added to the total

residual,

R ¼
P
lm

wsC
2
lm;

where the weight ws = 1/�2
s with a default value of �s = 0.001.

Otwinowski et al. (2003) have suggested using tighter

restraints on high order terms,

R ¼
P
lm

wsl
2C2

lm:

A2.4. Tails, a correction for diffuse scattering. Diffuse

scattering causes long tails on reflections and tails in the

direction of rotation (’) are often truncated by the integration

program by an underestimate of the reflection width on ’, the

‘mosaic spread’. A spot may be integrated on one or more

images: a fully recorded observation is integrated over a

narrower rotation range than a partial, so will include less of

the ‘tail’ of the spot. This leads to a systematic difference

between fulls and summed partials, a negative partial bias.

SCALA implements a very crude correction for this

systematic difference (Evans, 1997), based on some ideas from

Blessing (1987).

Thermal diffuse scattering is proportional to the Bragg

intensity J, so the measured intensity I = J(1 + �). The constant

of proportionality varies with resolution (and may be aniso-

tropic): it is modelled in SCALA as � = (sin �/�)2�1, where �1

is a refinable parameter. The width of the thermal diffuse

scattering peak is assumed to be constant in reciprocal space, a

refinable parameter v. The peak may be modelled as a triangle

of height h in the reciprocal-space coordinate q (Fig. 5), given

by the fraction of the complete peak area J� = hv. If the total
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Figure 5
Tails correction. The Bragg peak (intensity J) is superimposed on a
thermal diffuse scattering peak modelled as a triangle of half-width v and
height h in the reciprocal-space coordinate q = ’�, where ’ is the rotation
angle and � is the radius of the spot from the rotation axis. If the spot is
integrated over the rotation range shown, the two areas A1 and A2 of the
diffuse scattering are not measured.



scan range from the start of the first image to the end of the

last image is less than 2v, the diffuse scattering peak is trun-

cated by the areas marked A1 and A2 in Fig. 5. We can

calculate a correction to the equivalent full scan.

Intensity for full scan corrected for diffuse scattering is

given by

J ¼ I � hv ¼ I=ð1þ �Þ:

Intensity for partial scan from point u1 to point u2 is given by

J ¼ I � ðhv� A1 � A2Þ ¼ I � hvð1� C1 � C2Þ

¼ I=½1þ �ð1� C1 � C2�;

where

Cj ¼ Aj=hv ¼

0 uj > v
1
2½ðv� ujÞ=v�2 0<uj < v

1� 1
2½ðvþ ujÞ=v�2 Uj < 0

8<
: :

Correction factor (dividing scale factor) = [1 + �(1 � C1 �

C2)]/(1 + �) = f(v, �1).

A3. Estimation of errors

Integration programs such as MOSFLM (Leslie, 2006)

produce good estimates of intensities, but the estimates of the

individual errors are less reliable and are typically under-

estimated. After scaling, the error estimates can be improved

by comparing the observed scatter between observations and

the estimated standard deviation, making them equal on

average. If the standard deviations �(Ihl) are correct, then the

normalized deviations �hl = (Ihl - hI0hi)/�(Ihl) (where hI0hi is

averaged over all observations of reflection h excluding the lth

observation) should be distributed with a mean 0.0 and stan-

dard deviation 1.0. A simple correction to give improved error

estimates is �0(Ihl) = Sdfac[�2(Ihl) + (Sdadd ghlhIhi)
2]1/2. These

correction factors Sdfac and Sdadd have at least some physical

justification: Sdadd allows for the fact that many potential

errors are proportional to the true intensity, for example

fluctuations in the incident beam and errors in the exact

rotation. SCALA uses a default value of Sdadd = 0.02. The

factor Sdfac is a more general correction for unknown errors,

but includes uncertainty in the detector gain which converts

detector-readout values to photon counts which are used to

estimate Poissonian errors. To determine Sdfac, SCALA uses a

normal probability analysis (Abrahams & Keve, 1971; Howell

& Smith, 1992) of �hl and sets factor Sdfac equal to the slope of

the central part of the normal probability plot, thus forcing the

slope to be 1.0 after correction. Using just the central part of

the plot for this avoids fitting outliers in the distribution.

A4. Averaged intensities

Individual observations Ihl are averaged using the variance

as weight,

hIhi ¼

P
l

whlghlIhlP
l

whlg
2
hl

;

�ðhIhiÞ ¼
1P

l

whlg
2
hl

;

whl ¼ 1=�2
ðIhlÞ:

A5. Outlier rejection algorithm

Flow-chart for rejection algorithm.

(i) If there are three or more observations: for each Ihl

(l = 1, n), calculate the weighted mean of all other observa-

tions hI0hi and its error estimate �(hI 0hi).

(ii) Calculate normalized deviations �hl = (Ihl � ghlhI
0
hi)/

[�2(Ihl) + (ghlhI
0
hi)

2]1/2.

(iii) Find the largest deviation: if max|�hl| > SdRej (default

value 6) then reject one observation, but which one?

(iv) Count number of observations for which �hl > 0 (N+)

and �hl < 0 (N�).

(v) If either of N+ or N� = 1, then one observation is a long

way from all others, so reject this one. Otherwise, reject the

observation with the largest |�hl|.

(vi) If there are still three or more observations, iterate from

step (i).

(vii) If there are two observations left, by default keep both.

I thank George Sheldrick for many useful discussions on

Laue group determination and data-quality analysis, Ralf

Grosse-Kunstleve for his cctbx library and examples of how to

use it, Airlie McCoy for advice on C++ programming and

many other people with whom I have discussed data reduction

over the years, including Andrew Leslie, Harry Powell,

Eleanor Dodson, Jim Pflugrath, Gwyndaf Evans and Elspeth

Garman.
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